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Outline 

Neutral-meson mixing 
 
FNAL/MILC D-meson mixing analysis 
 Correlator analysis 
 Chiral-cont. extrap + Error analysis 
 
Outlook 



Testing Standard Model through high precision 

𝑉𝑢𝑑
𝜋 → 𝓁𝜈

𝑛 → 𝑝𝑒−𝜈   

𝑉𝑢𝑠
𝐾 → 𝓁𝜈
𝐾 → 𝜋𝓁𝜈

𝑉𝑢𝑏
𝐵 → 𝜏𝜈
𝐵 → 𝜋𝓁𝜈

𝑉𝑐𝑑
𝐷 → 𝓁𝜈
𝐷 → 𝜋𝓁𝜈

𝑉𝑐𝑠
𝐷𝑠 → 𝓁𝜈
𝐷 → 𝐾𝓁𝜈

𝑉𝑐𝑏
𝐵 → 𝐷𝓁𝜈
𝐵 → 𝐷∗𝓁𝜈

𝑉𝑡𝑑
𝐵0 mixing

𝑉𝑡𝑠
𝐵𝑠 mixing

𝑉𝑡𝑏
no hadrons

 

Flavor physics on the lattice 

Standard Model parameters (total 26): 
Gauge coupling, Yukawa coupling (quark and lepton masses), 
CKM and PMNS matrix elements, Higgs v.e.v. (EWSB scale), 
Higgs mass, 𝜃𝑊, 𝜃𝑄𝐶𝐷  
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Neutral-meson mixing 

Integrate out 
EW d.o.f 

perturbative non-perturbative 

Separation of scale: 
QCD calculation is independent of high energy theory 
High energy theory = electroweak (SM) or new physics (BSM) 

At hadronic scale, QCD is non-perturbative 
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Standard Model short-distance 

Up-type quark mixing (unlike Kaon and B-meson) 
CKM suppressed 
• b-quark suppressed by 𝑉𝑢𝑏𝑉𝑐𝑏

∗ 2 ∼ 0.210 
GIM suppressed 
• d- and s-quark diagrams cancel in flavor SU(3) limit 
Very small contribution (unlike Kaon and B-meson) 
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Standard Model long-distance 

Proceeds via on-shell states 
Although b-quark CKM sup. @ 0.210 
• No obvious GIM suppression 
• Hadronize via d- and s-quark 
Via pions: 𝑉𝑐𝑑𝑉𝑢𝑑

∗ 2 ∼ 0.22           Via kaons: 𝑉𝑐𝑠𝑉𝑢𝑠
∗ 2~0.22   

 
“In qualitative accord with experiment” 
Possibly dominant 
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BSM contribution 

BSM enters in short-distance only 

• Possibly BSM dominant 
• Many BSM models, some 

receive strongest constraint 
from D-mixing 

Petrov, et. al 
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Mixing operators 

Basis of 4-quark operators 

Only 5 matrix elements. Model independent. 

SM (V-A) current 

NP only. Right-handed 
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BSM mixing and experiment 

[1403.7302] 

[1402.1664v1] 

NP scale lower bound 
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FNAL/MILC 
D-meson mixing analysis 

Correlator analysis 

Data 
Correlator fits 
Renormalization 
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Lattice actions 

Gluon action 
O(𝑎2) improved. Errors start at O(𝛼𝑠𝑎

2, 𝑎4). 
 

Light-quark action (valence and sea) 
O(𝑎2) improved. Errors start at O(𝛼𝑠𝑎

2, 𝑎4). 
Preserve chiral symmetry. 
Have spurious taste degrees-of-freedom. 
 

Heavy-quark action (valence) 
O(𝑎) improved. Errors start at O(𝛼𝑠𝑎, 𝑎

2). 
Destroys chiral symmetry. 
No spurious taste degrees-of-freedom. 
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MILC gauge configurations 

Continuum extrap. 
4 lattice spacings 
 
Chiral extrapolation 
Multiple sea quark 
masses per lattice 
spacing 

176MeV pion 

~4GeV lattice 
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Light-quark propagators 

Partially-quenched 
chiral extrapolation 
7 to 8 valence masses 
Highly correlated* 
 
Other parameters 
Spatial box size 
 
Temporal length Rho-meson mass 
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Heavy-quark propagators 

Improved Wilson fermion on Staggered sea 
 
Set charm quark mass to ~𝑚𝑐 
→ unknown (small) tuning error fixed later 
 
One charm quark mass per gauge configuration 
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Correlation functions 

D-meson lattice operators 

Correlators 

Fit functions 
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Fit correlation functions (i) 

Understand data by staring at it  

Fo
r large t 

It’s 0.96!* 

Taking ratios, and scaling data is sufficient to get a (crude) value 
for the matrix elements. 

*Fermilab action does not 
tune rest mass, unlike RHQ 
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Fit correlation functions (ii) 

1) Robust error estimate through fitting 
2) Fit towards higher signal region 
 
Constrained curve fitting with Bayesian priors 
 
 
 
 
Motivate priors!!! 

parameters → distributions 

Prior information guide fits 
Treated like data* 
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Motivate priors (ground states) 

Want data to determine 
 
Ground state priors are unconstraining 
 
Motivated by staring at the data 
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Motivate priors (excited states) 

PDG 2014 

Quark model 

Heavy-quark smearing 
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Correlator fit region 

Simultaneous fit 
• Preserve correlation 
• Disentangle 𝑍0 

 
Bi-diagonal fit 
• Statistics limited 
• Preserve 0+ excited 

state information 
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Fit quality 

Distributions agree for the ground state matrix element fit parameter 
• Priors are not constraining for this parameter 

 
Stability plots for 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥, smearing, # excited states in back up slides 

O1 matrix element 
0.12 fm lattice 

0.2 ms sea 
0.0500 a valence 

Prior in 𝑟1 units for O1 ground 
state matrix element is 



Mostly non-perturbative renorm. 

 One-loop matching between lattice and continuum. 
 Lattice regularization to 𝑀𝑆-NDR scheme at 3GeV 
 BBGLN basis of Dirac operators 
 
One-loop renormalization expression:  
 
 
 
 
 
 
Errors start at  
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Mixing under 
renormalization 

NP coefficients 
Account for WF renorm. 
to all order 

PT coefficient 
Account for vertex 
renormalization 
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Result of correlator fits 
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FNAL/MILC 
D-meson mixing analysis 

Chiral-continuum extrapolation 
and systematic error analysis 

Fit function 
Stability of fit 
Error breakdown 



 

Extrapolate to physical point 

 

Control systematic uncertainty 

Effective theory lends understand to truncation 
errors 
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Chiral-continuum extrapolation 



       and        are the NLO wrong-spin taste-mixing terms 
Wrong-spin because the Dirac structure is in general different from 
Taste-mixing because taste-index between the two bilinears are summed over 
Copy-mixing also, but copy symmetry is exact  

Extrapolation to physical point 
Partially-quenched SU(3) 
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Staggered 

Heavy-meson 
Next-to-leading order 
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Systematic error analysis 

Sources of systematic error: 
 
Chiral logarithms 
Truncation errors 
 
Heavy-quark discretization 
Renormalization 
Heavy-quark and light-quark masses 
Finite volume 
Scale error 
 
Bayesian statistics treat systematics like statistical error 

Chiral-continuum extrapolation 

Other systematics 
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Analytic terms and HM 𝜒𝑃𝑇 

Chiral fit function includes NNLO analytic terms. 
 
At NLO: 𝑎2 term 
At NNLO: 𝑎4 term 
 
NNLO mass dependent  terms accounts for NNLO chiral 
logarithms truncation. 
 
 
 
Work at leading order in HM𝝌PT 
Option to include leading 1/𝑀𝐷 errors in 𝜒PT  

light quark and gluon 
discretization error  



Heavy quark discretization errors 
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Operator improvement 

“Heavy-quark rotation” 
Operator & action both 
tree-level a improved 

 

Tree-level 𝑎2 

𝑑s are adjusted by matching lattice and continuum spinors. 

[9604004] 

Action @ 𝑎2, 𝑎3 from Oktay Kronfeld (2008) [0803.0523] 

𝛼𝑠𝑎 corrections are estimated 
Main result of the Massive Fermions paper: 
Matching finite @ 𝑎𝑚0 → 0 and zero @ 𝑎𝑚0 → ∞ 
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Renormalization errors 

Fit for 𝛼𝑠
2 renormalization errors. HQ errors include 𝛼𝑠ΛQCD/𝑚𝑐. 

 
 
 
 
 
Renormalize data: 
Fix scale, scheme, evanescent operators 
 
Fit 𝛼𝑠

2: 
For same scale, scheme, etc… expect 

Power counting ~6.4% 
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Heavy-quark tuning 

Tune 𝐷𝑠 for 𝑚𝑐  

Perform the shift                                       @ the level of ChiPT 
      and                are introduced as priors 
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Parametric errors 

 
 
 
 
 
 
 
 
 

From 𝐷∗ → 𝐷𝜋 studies 
𝐷𝐷∗ form doublet under HQ spin 
symmetry 

Errors with correlations are included 

A list of the largest parametric errors 
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Final fit function 

+ finite volume correction 
+ parametric errors 

This fit accounts for every source of error 
that we would like to include 

(will) Fit to all 5 operators to preserve correlations 
Final error budget is a covariance matrix 
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Chiral-continuum extrapolation 
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Renormalization stability plot 

 
 
 
 
 
 
 
 
 
Error bar increases with 𝛼𝑠

2 terms in fit 
Fit remains unchanged when adding 𝛼𝑠

3 terms in fit 
 
One-loop contribution ~20% 
Power counting error estimate ~6.5% 
Error from fit 3 to 6%. Operator dependent. 



Preliminary error budget 
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Goal of 10% total error to match projected 
experimental error for the next decade  
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Preliminary results 

ETMC 2 flavor [1403.7302] 

ETMC 2+1+1 [1505.06639] 

Wilson twisted-mass 
3GeV MS-bar 
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Outlook 

Paper! 
 
 
Bag parameters w/ Ethan 
 
 
No plans for HISQ.  Errors are good. 



 

Thank you 
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Data 
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MILC asqtad ensembles 
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Valence light-quark parameters 
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Valence heavy-quark parameters 
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Correlator stability 
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Correlator fit: n-states 
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Correlator fit: smearing 
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Correlator fit: matrix element 
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Correlator fit: random sampling 
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ChiPT stability 
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Analytic terms and HM 𝜒𝑃𝑇 
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Heavy quark discretization errors 
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Renormalization errors 
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Data cuts in chiral extrapolation 

Preferred:                           and                    simultaneous w/ all data  
Individual: 5 operators fit individually 
mval < 560MeV: Drop valence quarks around 𝜌 mass 
a < 0.12fm: Drops 0.12fm ensembles (check continuum extrap.) 


